
A new nonGrassmannian pseudoclassical action for spin-1/2 particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1990 J. Phys. A: Math. Gen. 23 509

(http://iopscience.iop.org/0305-4470/23/4/019)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 09:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/23/4
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 23 (1990) 509-519. Printed in the UK 

A new non-Grassmannian pseudoclassical action for 
spin-; particles 

Chris I Belyea?, Bruce H J McKellart and Roland C Warner$§ 
t Research Centre for High Energy Physics, School of Physics, University of Melbourne, 
Parkville, Victoria 3052, Australia 
$ Institute for Fundamental Theory, Department of Physics, University of Florida, 
Gainesville, FL 32611, USA 

Received 1 June 1989 

Abstract. The first-quantised ‘spinor chain’ path-integral description of spin-f panicles due 
to Jacobson is a novel non-Grassmannian approach to the problem of finding a path 
integral which yields the Dirac or Weyl equation. Unlike conventional path integrals, the 
spinor chain description does not explicitly use a path integral of the form exp is, instead 
summing over all contributing spinor chains (paths) with equal weight, and hence the 
question of the existence of a canonical pseudoclassical action is left open. We examine 
the possibility of recasting the spinor chain system in the form of an action, and show that 
this involves subtleties concerning the weighting of unruly paths. We find the true action 
corresponding to the spinor chain which when canonically quantised yields the Weyl 
equation. Our action is extendable to the problem of the massive Dirac equation in a 
manner unlike the spinor chain. We discuss the classical solutions and compare these new 
actions with a similar non-Grassmannian action due to Barut and co-workers. 

1. Introduction 

It is well known that the Dirac equation can be obtained from the canonical quantisation 
of a pseudoclassical mechanics if the spacetime coordinates of the particle are aug- 
mented with Grassmann-valued coordinates. The Dirac equation alone arises if the 
Grassmann coordinates are spacetime vectors [ 11, and a supersymmetric spectrum if 
they are spinors [ 2 ] .  Quantisation of such pseudoclassical systems has been of interest 
recently in connection with attempts to covariantly quantise the Green-Schwarz super- 
string, which is a stringy extension of the superparticle [3]. 

Aside from twistors [4], Jacobson’s spinor chain [5 ,6 ]  and the action of Barut er 
a1 [7] are non-Grassmanian systems which are capable of describing spin-4 particles. 
The investigation of alternative types of non-Grassmanian ‘internal’ coordinates which 
yield spin-4 equations is of some interest from the point of view of the extension to 
an alternative description of strings, but also, as with superspace, might offer an 
alternative description of the manifold over which quantum field theory is defined. 

In this paper we begin with a simple derivation of Jacobson’s spinor chain for 
the case of the Weyl equation (massless neutrino), emphasising its attractive 
‘pregeometrical’ interpretation. We show that the spinor chain path integral, which is 
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an extension to 3 + 1 dimensions of Feynman’s checkerboard path integral in 1 + 1 
dimensions [8], may be redescribed formally in the form exp is, but that this action 
is ‘false’ in the sense that it yields the incorrect theory upon canonical quantisation. 
However, a similar action is found which does yield the Weyl equation in a very 
straightforward manner. There are two methods of derivation of the path integral 
form, one of which reduces to the spinor chain. Our action is then generalised to 
describe massive Dirac particles, where the mass parameter appears in the action in 
the conventional manner. Our action is closely similar to an action initiated by Proca 
[9] and further developed by Barut [7] in which, however, mass is introduced as an 
integral of the motion. 

2. The spinor chain form of the Weyl equation 

Our treatment of the path integral for the Weyl equation parallels the conventional 
derivation of Feynman’s phase space path integral for non-relativistic particle 
mechanics [ 101. 

The Weyl equation is 

(1) 

Defining the spinor-valued state vector I$(?))  and dividing the time into equal small 
steps A t  we have 

(2) 

where pop = -iV. The classical trajectories are described by (x( t ) ,  s( t ) ) ,  where s( t )  = *1 
is an eigenvalue of u3. We write the corresponding eigenvector as Ix( t ) ) a  ( r )  where 
a ( t )  is the eigenvector of u3 with eigenvalue s ( t ) .  The Feynman kernel between times 
t and t + A t  is thus written as 

K [ x ( t ) ,  s ( t ) ;  x(t + A t ) ,  s ( t  + A t ) ]  = a’( r + A r ) ( x ( t  + At)lexp{-iAta.p,,}lx(t))a(f). (3) 

a 
a t  

-ius Vi+b(x, t )  = i - $(x, t ) .  

Ii+b(t+ A t ) )  = exp{-iAta * poPH$(tH 

Defining the spin matrix-valued kernel by 

K [ x( t ) ,  s ( t ) ;  x( t ’ ) ,  s( t ’ ) ]  = a ’( t ’ )  ff [ x( t ); x( t‘)]  a ( t )  

inserting the unit operator 

and using the relation 

1 
(XlP) = (JT;;)3 exp(ip * x) 

we obtain in the usual fashion 

(4) 
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Between arbitrary times t i  and tf E t i  + NAr the kernel is 

K [ x ( t i ) ;  x(tf)]= ['IN 5 d3p(r,-At). . . d3p(ti)  I d3x(rf-At) .  . . d3x(fi+Af) 
(2.rr)' 

xexp i 'E p ( t ) . [x ( t+At ) -x ( t ) ]  

xexp{-iAtp(t/-At) * a}. . . exp{-iAtp(t,) - a}. 
{ 1 = 1 ,  

The derivation of the spinor chain form, following Jacobson [ 5 ] ,  consists of introducing 
a complex 2-component spinor z and writing, for A t  small, 

exp{-iAtp(t) a}= l,-iAtp(t) * a 

= 1 d'z( t)z( t)z( t)'[l-3iAp( t )  - z( t)'uz( t ) ]  

= 1 d2z(t)z(t)z(t) '  exp{-i3Atp(t) . z(t) 'az(t)} (7) 

using 

where 

satisfies ztz = 1 and the measure d2z is appropriately normalised (or, alternatively, z 
is an element of CP', since the phase contributes only to normalisation). Equation 
(6) becomes 

x I d3x( f, - A t )  . . . d3x( t ,  + A t )  

x I d2z(r , ) .  . . d2z(r,-At)z(t, -At)z'(t, - A t ) .  . . z(t ,)z '( t ,)  (9) 

1 l , - A l  

i p ( t )  - [ x ( f + A t ) - x ( t ) - 3 z t ( t ) a z ( t ) A t ]  . 
I = 1, 

Since z t a z  is real, each p-integration is just a delta-function: 

& d3p( t )  exp{ip( t )  - [x(  t + A r )  -x (  t )  -3zt(t)az(t)At]} 

= 8 ' 3 ' ( ~ (  t + A t )  - X( t )  - 3 ~ ' (  t ) a z (  [ ) A t )  (10) 
and hence equation (9) can be written symbolically in the limit A t  + 0 using the delta 
functional S [  3 as 

D~(t)S[d~(t)-3z'(t)az(t) dt]. (11) 
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The x-integrations merely serve to 'pregeometrically' define each successive path 
element dx( t )  in terms of the unit spinor z( t )  and the kernel can be recast in the form 
given by Jacobson [ 51: 

E = d3z( t , )  . . . d2z( tr - A t ) z (  t, - At)z'(  9 - A t )  . . . z( t,)z'( t , )  I 
where only the path endpoints appear explicitly rather than the full paths. 

In equation (9), the z-integrations match the p-integrations, which as usual number 
one more than the x-integrations. In the definition we chose p (  t )  and z( t )  to vary at 
t ,  and to be fixed at t,, but a more symmetrical possibility is to define z and p at the 
mid-points between the t k .  We can then view the initial and final states a(? , )  and a(t,) 
as z(  t , )  and z( t f )  and write symbolically 

K [ x ( t , ) ,  4 6 ) ;  x(tf), z (q ) I=  z ' ( t , ) a w ;  x(tj) lz(t ,)  

= I Dz( t)Dp( t ) D x (  t )  exp{iS} (13) 

where 

S =  dt [ i i (z tz -z tz )+p .  (X-3z'az)l (14) I 
and we have used 

z'(t+At)z( t )  = 1 +f{[z+( t +At)  - z'( t ) ]z(  t )  - z'( t +At)[z( t + A t )  - Z (  t ) ] }  
(15)  

= exp{ - ;( z'i - z ' z ) A t }  

which is true only for continuous z( t )  as A t  + 0. That the formal expression (13) has 
been achieved does not necessarily mean that (14) is the canonical action, by which 
we mean the action that yields the Weyl equation upon canonical quantisation. The 
fact that the integrand in (13) is valid only for continuous z( t )  is not in itself a concern: 
this is a common occurrence in path integrals derived from canonical actions, a relevant 
example of which is Klauder's non-Grassmannian representation of a Fermi oscillator 
[ll],  and it occurs even for the ordinary harmonic oscillator [ l l ] .  The decision as to 
whether or not (14) represents the true canonical action far a neutrino rests on whether 
or not the unambiguously defined expression (9) specifies the same weighting for 
discontinuous trajectories as results from the conventional derivation of the path integral 
(involving the insertion of resolutions of unity) from the Hamiltonian of (14). In what 
follows we will show that this is not the case, and that in fact the canonical action 
does not contain a factor of 3. 

3. The Weyl equation via canonical quantisation 

First recall that an action which is the canonical form 

dt[mj-  H ( T ,  q ) ]  
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with canonical coordinate q and momentum T may be modified with the addition of 
a boundary term to 

S = dt[i( ~4 - q7j) - H( T, q ) ]  i 
and re-expressed in terms of the complex variable 

1 
z = - ( q  + i r )  v5 

as 

S = dt[ii(z*i - z*z) - H ( z ,  z * ) ]  i 
yielding the Poisson bracket relations 

[ z ,  z*IpB= -i 

which become the familiar harmonic oscillator raising and lowering operators in the 
quantum theory, satisfying 

[ z ,  z*]  = 1. 

Taking the obvious many-variable extension, it is clear that the action given by 

is already in canonical form. We define the two-component spinor z to satisfy z'z = 1 
as in the spinor chain formulation. In the language of Dirac [14] this is a first-class 
constraint, in contrast to the Grassmannian description of the Dirac equation [ 13 which 
requires passing through the Lagrangian formalism, computing second-class phase 
space constraints and defining the Dirac brackets. The Schrodinger equation following 
from (16) is thus straightforwardly given by 

d 
H I + ) = P ~ , , .  z b p a o p I + ) = i z  I+) (17) 

and the unimodularity constraint becomes a weak condition on the physical states 

zbpzopl+) = I+) 
which restricts the unbounded spectrum of states of the form 

I n 1) 0 I nz) 

where In,), n, 3 0, is the harmonic oscillator level given by 

z;,,opz( OOPl n,) = n,l n , )  

(XI+) = +I(X, t)lll)010,)+ +Ax, t)101)0112). 

z : p ~ ~ o p l + )  = al+) 

to the form 

This yields 
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which can be verified by explicit calculation. The role of zOp in Hermitian bilinear 
forms is essentially mute. hence 

obeys the Weyl equation (1). 

4. Derivation of the path integral 

In order to construct the phase space path integral we use the normalised s 

lz)= ~ ~ 1 ~ 1 1 1 ~ ~ 1 0 2 ) + ~ ~ 2 ~ 1 0 1 ~ 0 l 1 2 ~  

(zlz’) = Z t Z ‘  

where ztz = 1. These are analogous to coherent states and satisfy 

(z /z~ ,az , ,~z~)  = ZtUZ’. 

3 

(These are unitarily equivalent to the ‘coherent spin states’ for spin f [ 121.) The above 
identities mean that the resolution of unity given by 

1 = d2zlz)(zl (23 1 5 
plays the same role in the path integral as 

1 = d2zzzt 5 
mentioned earlier. The conventional derivation of the path integral consists in inserting 
the various resolutions of unity (such as (23)) between the exponential factors in the 
expression 

K =(z(tf ) ,x( t f ) /  exp{-iArH,,} exp{-iAtH,,}. . . exp{-iArHo,})z(ti), x ( t i ) ) .  (25) 

After using 

(z’lexp{ -iAtHop}/z) = (z’lz) 

for small A t  this yields 

.=[&IN ~ d 3 p ( r i ) . . . d 3 p ( r j - A r )  5 d3x(r,+Ar) . . .  d3x(tf-Ar) 

X I  d2z(tf-At) .  . . d 2 z ( t i + A r ) z t ( f f ) z ( t f - A f )  

xz+(r,-At). . . z( t i+At)zt(r i+At)z(r i )  

As expected, this may be written symbolically as a path integral over exp{iS1}, with 
validity only for continuous z( t )  trajectories, i.e. when z(  t + A t )  + z(  t )  as A t  + 0. Clearly 
if we had considered equation (14) as the action, the equivalent of (26) would specify 
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a different weighting for the discontinuous z( t )  trajectories than that of the spinor 
chain (equation (9)). The spinor chain corresponds to an alternative path integral 
derivation which is always possible if the Hamiltonian can be expressed in a form 
diagonal with respect to the coherent states [ 131: 

HOP= d2zh(z)lz)(zl. (27) 

h(z)  = 3p. ( z b z ) .  (28) 

I 
Using the identities (8)  and (22)-(24) we find 

Rather than inserting between the exponentials in (25), when (27) holds an alternative 
is to convert each exponential directly since (at least in this case) 

exp{-iAtHop} = d2z exp{-iAth(z)}lz)(zl. (29) J 
Thus the factor of 3 in the spinor chain is seen to correspond to an alternative 

derivation of the path integral from the canonical action (16), one which does not 
guarantee to produce the path integrand in the form of an exponential of the canonical 
action. 

In retrospect it is of interest to note that Klauder [15] suggested long ago the 
exercise of starting with the Weyl Hamiltonian and searching for the corresponding 
pseudoclassical theory, making use of over-complete states including unimodular 
spinors for the spin degrees of freedom. 

5. Pseudoclassical solutions and extension to the massive Dirac equation 

It is instructive to examine the pseudoclassical equations of motion resulting from SI. 
We use the word pseudoclassical to emphasise that these equations of motion, as in 
the more familiar Grassmannian formulations, are not necessarily the classical limit 
( h  + 0) of the quantum system. This point will be clarified later. The pseudoclassical 
Hamilton equations are 

z = -iu * pz P = O  x = z ' u z  (30) 

z( t )  =exp{-ia.pt}z(O) P ( t ) = P  (31) 

with solution 

(32) 
where $ is a unit vector in the direction of p .  The instantaneous speed is always c and 
the particle in general moves in a corkscrew fashion at an average speed less than c. 
When the velocity and momentum are aligned, i.e. 

$ . X = i l  (33) 
the particle undergoes rectilinear motion on the light cone. Oddly, the quantum 
equation for the energy-momentum eigenstates I qb), namely 

p - aid)= E \ + )  3 E = i p  (34) 
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ensures that (33) holds, restricting physical neutrinos to the light cone, since pseudo- 
classically 

(35) 

The negative sign corresponds to the negative energy neutrino solution. Thus in this 
model the observed rectilinear light-cone motion of neutrinos is a quantum effect, 
caused by the quantisation of $ - X. Note that if we reinsert the factors of h into the 
pseudoclassical action there is a factor of h in front of the kinetic terms of z( t )  and 
the pseudoclassical spin, for instance, is given by 

E = p(p^ * X). 

s =$hztaz.  

Such factors of h are also present in the Grassmannian pseudoclassical actions. 

(hereafter in this section explicitly showing h factors) 
The straightforward extension of S ,  to the case of the massive Dirac equation is 

3 ztaz-mztpz 

where z is a four-component spinor obeying the unimodularity condition z'z = 1, and 
(Y and p are the Dirac matrices. 

Repetition of the arguments for the Weyl case yields the massive Dirac equation. 
The pseudoclassical Hamilton equations are 

1 
( .P+"Z p = 0  x = ziaz (37) z = - -  (y 

h 

with solution 

z( t )  = exp{ -- (a p + p m )  t}z(o) 

x( t )  = X(O) +- sin(2st)z'(0)az(0) 

i 
h 

h 
2E 

+ t--sin(2st) p i  [ 2"E ] E E  

where 

and the energy E is given by (for all times) 

E = p -  z'(O)az(O)+ mz'(O)pz(O). (39) 

(a*P+"l4)= El4) (40) 

In analogy with the Weyl case, the quantum equation for the momentum eigenstates 
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quantises the energy so that E = * E .  This condition therefore imposes in turn a 
condition on z(O),  which is that z ( 0 )  also obey (40). Inserting the solutions of (40) 
in (38) yields, as for the Weyl case, 

(41) P x(t)=x(O)*t- .  
E 

This is the class of pseudoclassical trajectories which obey the quantum energy- 
momentum relationship. As a consistency check it can be verified that the familiar 
operator solution for xop( r )  [ 161 is obtained (after some manipulation) by inserting 
operator labels into (38). That the Zitterbewegung terms disappear in (41) is due to 
the fact that the relevant terms in the operator solution have non-vanishing matrix 
elements only between states of opposite energies, and the classical trajectory (41) is 
identified by the correspondence 

x ( t )  =(4lx0&)l4). 

h ( z )  = 5 [ p  z + a z  + mz‘pz]  

The generalisation of (28) to unimodular 4-spinors is 

which could be used in a diagonal path integral representation. Note, however, that 
Jacobson’s extension to the massive Dirac case was achieved in a different manner, 
by the use of two unimodular Weyl spinors. 

6. A covariant formulation 

Although SI and SII lead to Lorentz-invariant quantum equations, they are not them- 
selves Lorentz invariant. This feature is also present in the spinor chain of equation 
(1 1) on which they are modelled. Nevertheless a Lorentz-covariant expression of the 
pseudoclassical actions SI and Sll can be found since any expression, Lorentz invariant 
or not, can be written in a covariant form with the use of non-dynamical objects. (In 
the context of theories of gravity, Cartan wrote down Newtonian gravity in a generally 
covariant way to illustrate that the ‘principle of general covariance’ by itself has no 
physical content [ 17]’.) Such a covariant expression can be found by first writing the 
unimodularity constraint into the action in the form of a Lagrange multiplier p o ,  
changing (36) to 

where use has been made of the Dirac adjoint f = z’p and the matrices yo = p, y = pa. 
Rewriting (42) as an integral over an arbitrary worldline parameter s, 

Under a Lorentz transformation, 

d t  
- and dy’b 
ds 

t We are grateful to one of the referees for drawing attention to this point. 
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transform as 

respectively, where n, is a timelike vector satisfying n 2  = 1. A covariant and 
reparametrisation invariant expression is therefore 

dz dZ 1 [ i (  ds ds  
SIII=  ds - Zn,y”---nn,y”z 

where nP is a non-dynamical constant 4-vector with unit magnitude, the unit magnitude 
replacing the unimodularity condition on z of SII .  n, encapsulates the Lorentz 
non-invariance of the pseudoclassical action and points back to the choice of time 
coordinate involved in the Hamiltonian quantum treatment. By virtue of the Lorentz 
invariance of the quantum theory one expects the vector n, to be arbitrary. 

7. Comparison with other non-Grassmannian approaches 

Our action has a close similarity to the action of Proca [9] and Barut et a1 [7] which 
in flat space reads 

SI, = 1 d r  [ 2 ( Zdi d r  -g d r  z) + p ,  (z  - f ~ p z ) ]  (45) 

where z is a complex Dirac spinor unrestricted by a unimodularity condition. Via the 
Lagrange multiplier role of p ,  , the above action shares with our action and Jacobson’s 
spinor chain the ‘pregeometrical’ definition of velocity in terms of a spinor bilinear 
form. However the parameter r is apparently physically meaningful (not an arbitrary 
worldline parameter) in the above model, since (45) is not reparametrisation invariant. 
Mass does not appear as a parameter, being introduced rather as the value of the 
Hamiltonian with respect to 7, which therefore becomes the proper time of the centre 
of mass of the particle. The exact relationship between our action and (45) is not yet 
clear to us. 

It is also interesting to note the comparison between the definition inherent in our 
model of the Weyl equation (and similarly in the above models) of 

d x K z t a z  d t  

and the connection between spinors and spacetime advocated by Penrose [4], which 
uses a connection between the position vector x, and a spinor w of the form 

XP Ot w+a,w.  

8. Conclusion 

The relativistic single-particle spin-f systems we have discussed fall within a class of 
non-Grassmannian approaches which imply a definition of small spacetime displace- 
ments in terms of a fundamental spinor variable. The Weyl particle version of our 
action is the canonical equivalent of Jacobson’s spinor chain. In contrast to previous 
non-Grassmannian work, our approach to the massive Dirac equation is conventional 
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in that mass appears as a parameter in a canonical action. Since in our action there 
is only one phase space constraint (the unimodularity constraint) which is of the first 
class, quantisation is simpler than for Grassmannian actions. We have presented a 
covariant and reparametrisation invariant version which might have a useful extension 
to fermionic strings. 

One unusual feature of our model is that the relationship between energy and 
momentum E *  = lpi2 + rn2 emerges only after quantisation, and hence the pseudo- 
classical dynamics per se does not describe the physically realised classical limit of 
the quantum theory. 
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